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Abstract

Reliable measurement of total testosterone is essential for the diagnosis, treatment and prevention 

of a number of hormone-related diseases affecting adults and children. A mass spectrometric 

method for testosterone determination in human serum was carefully developed and thoroughly 

validated. Total testosterone from 100 μL serum is released from proteins with acidic buffer and 

isolated by two serial liquid–liquid extraction steps. The first extraction step isolates the lipid 

fractions from an acidic buffer solution using ethyl acetate and hexane. The organic phase is dried 

down and reconstituted in a basic buffer solution. The second extraction step removes the 

phospholipids and other components by hexane extraction. Liquid chromatography–isotopic 

dilution tandem mass spectrometry is used to quantify the total testosterone. The sample 

preparation is automatically conducted in a liquid-handling system with 96-deepwell plates. The 

method limit of detection is 9.71 pmol/L (0.280 ng/dL) and the method average percent bias is not 

significantly different from reference methods. The performance of this method has proven to be 

consistent with the method precision over a 2-year period ranging from 3.7 to 4.8% for quality 

control pools at the concentrations 0.527, 7.90 and 30.7 nmol/L (15.2, 228, and 886 ng/dL), 

respectively. This method provides consistently high accuracy and excellent precision for 

testosterone determination in human serum across all clinical relevant concentrations.
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1. Introduction

Concentrations of testosterone in serum aid in the diagnosis and treatment of diseases such 

as hypogonadism [1,2], polycystic ovary syndrome [3], androgen deficiency in men [4–7], 

precocious or delayed puberty [8–10], and certain cancers [11–14]. Research findings 

describe associations of testosterone concentrations in blood with diabetes [15, 16], 

osteoporosis [17], cardiovascular diseases [15,18] and increased mortality [19,20]. Such 
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associations have stimulated additional research studies and resulted in new clinical practice 

applications.

A common element to all these clinical and research applications is the need for reliable and 

accurate testosterone measurements. Considerable inaccuracy of testosterone assays has 

been described, especially at testosterone concentrations commonly observed in women and 

children [10,21–25]. Mass spectrometric methods were found to show improved accuracy 

and lower variability than immunoassays, especially at low testosterone concentrations 

[21,22,24]. This can be attributed in part to the higher specificity of this assay technology 

which is achieved by isolating the analyte from the sample matrix prior to analysis and by 

mass and structure-specific detection [26]. However, studies comparing routine clinical 

mass spectrometric assays against a reference measurement procedure showed inter-method 

variability in precision and accuracy [25]. Though less pronounced than the variability 

observed with immunoassays, the performance of many mass spectrometric assays remains 

inadequate for testosterone determination in all clinical and research settings. This created 

the need for developing new mass spectrometry-based methods for routine testing of 

testosterone that are suitable for measuring testosterone in men, women and children with 

appropriate accuracy, precision and throughput. To meet these needs, we developed a mass 

spectrometry-based method for the measurement of testosterone at all concentration levels in 

the general population.

2. Material and methods

2.1. Materials and chemicals

Testosterone traceable to Australian National Measurement Institute reference material 

(NMI M914) was obtained from Cerilliant (Round Rock, TX) and [2,3,4-13C3]-testosterone 

(13C3-testosterone) from IsoSciences (King of Prussia, PA). Ethyl acetate, hexane, 0.1% 

formic acid in acetonitrile, 0.1% formic acid in water, sodium acetate, and ammonium 

carbonate, glacial acetic acid, and ammonium hydroxide were acquired from Fisher 

Scientific (Suwannee, GA) and ethanol from Sigma-Aldrich (St. Louis, MO). All solvents 

were HPLC grade and chemicals were reagent grade. Steroids used for interference testing 

were obtained from Steraloids (Newport, RI), Sigma-Aldrich and Cerilliant and prepared at 

the concentration 6.93 nmol/L (200 ng/dL) in a solvent solution (water/acetonitrile/formic 

acid, 90:10:0.1, v/v/v).

Frozen human serum samples and charcoal processed (one time or six times) sera were 

purchased from Bioreclamation (Hicksville, NY). Three levels of quality control (QC) 

materials were prepared by pooling units of human sera from healthy donors (QC low: 0.527 

nmol/L or 15.2 ng/dL, QC medium: 7.90 nmol/L or 228 ng/dL, QC high: 30.7 nmol/L or 

886 ng/dL).

Commercially prepared, de-identified single donor human serum samples were obtained 

from several blood banks in the U.S. and serum specimens from a large study were used to 

evaluate the method. Study participants provided informed consent. The study protocol was 

approved by the CDC Research Ethics Review Board.
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2.2. Sample preparation

Serum samples were thawed, mixed at room temperature and processed together with 

quality control samples, reagent blank, and calibrators. Calibrators were prepared in ethanol 

from 1 mg/mL certified testosterone solution with no more than 3 serial dilutions. Thirteen 

calibrator levels covering a range of 0.0347–34.7 nmol/L (1.00–1000 ng/dL) were processed 

together with each set of samples, quality control samples, and reagent blank. Samples and 

reagents were pipetted in 96-well plates (2 mL well volume, Seahorse Labware, Chicopee, 

MA) using a Hamilton Microlab STARLet Liquid Handler instrument (Reno, NV). The well 

plates were sealed using a PTFE coated sealing mat (ArctiSeal, Arctic White LLC, 

Bethlehem, PA). Serum samples (100 μL) and internal standard solution (IS, 13C3-

testosterone, 100 μL, 3.43 nmol/L or 100 ng/dL in ethanol) were combined and mixed for 30 

min at room temperature. Buffer solution (100 μL, 0.5 mol/L sodium acetate, pH 5.5) was 

added, and the sample solution was mixed for 2 h. Liquid–liquid extraction (400 μL, ethyl 

acetate: hexane, 60:40, v/v) was performed twice. The solvents of the combined organic 

layers were evaporated using a Genevac EZ-2 evaporation system (Valley Cottage, NY) and 

the sample extract was re-dissolved in buffer solution (150 μL, 0.2 mol/L ammonium 

carbonate, pH 9.8). The sample solution was extracted twice using hexane (300 μL each) 

and the combined organic layers were evaporated. The sample extract was reconstituted 

(150 μL, 0.1% formic acid in water: 0.1% formic acid in Acetonitrile, 80:20, v/v) for liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis.

2.3. LC-MS/MS

Electrospray ionization LC-MS/MS analysis was carried out using an AB Sciex 5500 triple 

quadrupole mass spectrometry instrument (Foster City, CA) with a Shimadzu LC-10 AD VP 

HPLC system (Columbia, MD). Chromatographic separation was achieved at 40 °C using a 

reversed phase column (C18 Hypersil Gold, 50 × 3 mm, 3 μm, Fisher Scientific Suwanee, 

GA) protected by a guard column (10 × 3 mm, 3 μm) with the same material. The analyte 

was eluted from the column using a gradient with the eluent changing from 10% to 70% 

acetonitrile in water within 12 min. The column was washed for 3 min in 95% acetonitrile in 

water and equilibrated for 3 min at the initial eluent composition. Both solvents contained 

0.1% formic acid. The flow rate and injection volume were 500 μL/min and 40 μL, 

respectively. Total testosterone was detected by selected reaction monitoring (SRM) in the 

positive ion mode, quantified by the ion transition m/z 289 → 97 for testosterone and 292 → 

100 for IS. For confirmation of the analytes, the transitions m/z 289 → 109 for testosterone 

and 292 → 112 for IS were used.

The ionspray voltage and source temperature were 4.75 kV and 650 °C, respectively. 

Declustering, entrance and exit potentials were 96 V, 8 V and 12 V, respectively. Curtain 

gas, ion source gas 1, ion source gas 2, and collision gas were set to 45 psi, 35 psi, 55 psi, 

and 10 psi, respectively. The collision energies for quantitation ions of both testosterone and 

IS were 27 eV, and confirmation ions 31 eV.

2.4. Data analysis

The LC-MS/MS raw data were processed using Analyst software (version 1.5.1 or higher, 

AB Sciex, Foster City, CA). SAS (version 9.2) was used to define quality control limits and 
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to evaluate analytical runs against these limits using a multi-rule quality control approach 

[27]. The limit of detection was determined by using an AB Sciex 5500 triple quadruple 

instrument according to the procedures previously described [28].

We used the average sum of squared residuals (ASSR) and the average relative sum of 

squared residuals (RASSR) from 20 sets of calibration runs to choose the best fitting 

regression model from among linear and polynomial models with no weighting, weights of 

1/X, 1/X2, or 1/(Variance of Y). The ASSR was calculated by summing up the squared 

differences between the model predicted and observed Y values. The RASSR was calculated 

by dividing the ASSR by the average of the Y values. A linear calibration curve using a 

weight of 1/X was selected because this model had the smallest ASSR among all linear 

models and the second smallest RASSR among all models. Two quadratic models had 

slightly smaller ASSR values than the model chosen, but their RASSR values were larger 

than the RASSR values of the model chosen.

The measurement accuracy was calculated by analyzing 172 sera with reference values 

assigned by reference methods operated at CDC with the Joint Committee for Traceability in 

Laboratory Medicine (JCTLM) code C8RMP6 [29,30], NIST with the JCTLM code 

C4RMP2 [31] and the University of Ghent with the JCTLM code NRMeth-7 [32] as part of 

the CDC Hormone Standardization Program (Host) [29,33]. The measurement bias was 

assessed following CLSI protocol EP9-A2 [34] using a mean bias of ±6.4% against the 

reference method and a total error of ±16.7% for individual measurements as criteria 

[30,35]. Serum-based reference material SRM 971 at 2 concentrations was obtained from 

NIST, and ERM-DA345 and ERM-DA346 from LGC Standards for accuracy assessment. 

Correlation of our method with the reference methods using Deming regression and bias plot 

analysis was performed with Analyse-it (Analyse-it Software, Ltd., Leeds, United Kingdom, 

version 2.26).

Repeatability and method precision for low, medium and high QC pools were determined 

following CLSI protocol EP5-A2 [36] on 71 different days (two results on each of two runs 

per day) over a period of 2 years, using 3 calibrator lots and multiple operators.

Sample matrix effects (ME) were evaluated on 6 different matrices including ethanol, saline, 

one time charcoal processed serum, six times charcoal processed serum, male serum and 

female serum as previously described [30,37]. The ME was assessed using the following 

equation, ME% = B/A × 100, where B refers to the area count ratios of testosterone to 13C3-

testosterone obtained from samples in matrix and A in matrix free solution.

The extraction efficiency was assessed in triplicate using medium QC pools and adding the 

IS solution before sample preparation (A), and by adding the IS solution at the end of the 

sample preparation (B), before injecting the sample in the LC-MS/MS analysis. The 

efficiency was calculated using the following equation: measured value (B)/measured value 

(A) × 100.

Specificity was determined with two different approaches. In the first approach, potentially 

interfering compounds such as structural steroid analogs were added to samples to assess co-

elution, while in the second approach quantitation ion/confirmation ion (QI/CI) ratios 
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obtained with patient samples were compared against those obtained with calibrators for 

each analytical run. The testosterone QI/CI ratios of calibrators and of 56 serum samples 

from the same batch of the above accuracy testing experiment were compared. Co-elution 

was assumed when the QI/CI ratio differed more than 20% [30,38,39].

Method ruggedness was assessed by comparing measurement values of the medium QC 

obtained with the described method against those obtained after modifying 5 main sample 

preparation parameters. The first parameter (P1) is the equilibrium time, during which sera 

are incubated with IS to achieve equilibrium between free and protein-bound IS (incubation 

durations tested: 20, 30 and 40 min). The second parameter is the pH of the dissociation 

buffer (P2), which is used to release testosterone from sex hormone binding protein and 

other proteins (pH levels tested: pH 5.2, 5.5 and 5.8). The third parameter is the time 

allowed for removing testosterone from proteins (P3, incubation times tested: 90, 120 and 

150 min). The fourth parameter is the buffer concentration used to remove testosterone form 

proteins (P4, buffer concentrations tested: 0.3, 0.5 and 0.7 mol/L). The last parameter (P5) is 

the pH of buffer used in the second extraction step to remove polar lipids such as 

phospholipids (pH levels tested: pH 9.4, 9.8 and 10.2).

3. Results and discussion

The aim of this study was the development of an analytical method for measuring total 

testosterone in sera from men, women and children. Thus, this method needs to be able to 

measure this analyte over a wide concentration range starting at very low concentrations 

typically observed in children. The limits of detection (LOD) and quantitation (LOQ) [28] 

were determined to be 9.71 pmol/L (0.280 ng/dL) and 32.9 pmol/L (0.950 ng/dL), 

respectively. The linearity of this method was verified for the concentration range from 17.3 

pmol/L (0.500 ng/dL) to 45.1 nmol/L (1300 ng/dL). To assure accurate and consistent 

calibration over such a wide concentration range, we use 13 calibrator levels and apply a 

weighted linear regression model. The sensitivity and measurement range of our method is 

sufficient for measuring testosterone levels in the general population. The signal-to-noise 

ratio ranged from 4.7 to 11.7 for 20 donor samples with testosterone concentration from 50 

pmol/L to 140 pmol/L (0.40 to 4.10 ng/dL).

There was no undetectable testosterone concentrations in 250 individual donor samples from 

men and women age 6 years and older with serum testosterone concentrations ranging from 

0.03 nmol/L (0.920 ng/dL) to 35.49 nmol/L (1024 ng/dL) (Table 1). A representative LC-

MS/MS selected ion chromatograms of female samples were shown on Fig. 1.

The lack of sufficient accuracy and reliability of testosterone measurements is a major 

concern of the clinical and public health communities [40,41]. The Centers for Disease 

Control and Prevention is addressing this concern through its Hormone Standardization 

Program that evaluates assay accuracy using predefined performance criteria [35]. Using 

172 serum samples with target values assigned by the National Institute for Standards and 

Technology, the University of Ghent and the CDC reference method covering a 

concentration range from 0.145 nmol/L (4.19 ng/dL) to 34.9 nmol/L (1007 ng/dL) showed 

no significant difference between our method and established reference methods with 
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Deming regression (intercept: −0.01, 95% CI: −0.05–0.04 nmol/L, slope: 0.99, 95% CI: 

0.98–1.00, Fig. 2a) and with plot analysis (mean bias: −1.2%, 95%CI: −5.9–4.1%, Fig. 2b). 

Individual measurements on all 172 samples met the 16.7% total error criterion. The 

differences between target values of certified serum-based reference materials from NIST 

and LGC Standards are in average −1.3% (Table 2), which is within ±6.4% criterion for 

routine, clinical methods [30,35]. Furthermore, the mean bias observed with our method is 

smaller than those reported for other methods [25,42], especially at testosterone 

concentrations typically observed in women and children.

The consistency of measured values obtained after changing 5 sample preparation 

parameters suggests that this method is minimally affected by small variations in sample 

processing parameters (Fig. 3). This is reflected in part by the high long-term precision of 

this method. The method precision over 2 years covering 71 different days was 4.8%, 3.7%, 

and 3.8% for QC low, QC medium and QC high, respectively. The repeatability (within-run 

precision) was 3.7, 2.2, and 2.0% respectively. The method precision is well below the 

suggested maximum impression for total testosterone measurements of 5.3% [30,35] and 

smaller than the precision reported for other mass spectrometry methods [25,42].

Method sensitivity and precision can be affected by matrix effects that can cause ion 

suppression among other effects. The mean ME% determined in 6 different matrices is 

100.2% (95% CI: 98.7–101.8%) as studied previously [30]. The matrices include ethanol, 

saline, 1 time charcoal processed serum, 6 times charcoal processed serum, male serum and 

female serum [30]. These findings suggest that measurements are minimally affected by the 

sample matrix, which might explain in part the high accuracy and precision obtained with 

this method. This method contains two liquid–liquid extraction steps. In the first step, serum 

lipids are separated from polar components. In the second step, polar lipids such as 

phospholipids are largely removed from the sample extract as evidenced in reduction in 

SRM (m/z 184–184) and precursor-ion scanning (pre m/z 184) signals that are indicative for 

these types of lipids [43,44]. Polar lipids typically accumulate on the column, deteriorate the 

separation and increase the ion suppression. A second extraction to remove polar lipids 

improved levels of precision (especially at low testosterone concentrations) and consistency 

of the chromatographic separation, and it prolonged column lifetime by about 5 times. In 

addition, we do not use protein precipitation, which is another common sample preparation 

approach [45]. Because testosterone is mostly bound to serum proteins, protein precipitation 

without complete dissociation of testosterone from binding-proteins and incomplete 

equilibrium of the IS with the binding proteins may result in incomplete or inconsistent 

analyte recovery [33]. Therefore, omitting protein precipitation seems to partially contribute 

to the very low measurement precision observed over 2 years. Despite multiple extraction 

steps, the extraction efficiency is 73% (95% CI: 70–76%). This is sufficient for quantitative 

measurements of testosterone at low concentrations such as those observed on women and 

children.

Measurement specificity has been another concern with testosterone measurements. To 

assess for potential interferences with known and unknown compounds we applied two 

approaches for interfering testing. In the first approach, the 28 structural analogs we tested 

showed no interfering peak in the chromatograms for the quantitation and confirmation ions 
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(Table 3). The second approach was used to assess interferences from unknown compounds. 

The average QI/CI ratio calibrators was 0.98 (95% CI: 0.82–1.15) while the ratio in 56 

serum samples was in average 1.12 (95% CI: 1.08–1.15). The highest QI/CI ratio observed 

in an individual sample was 1.24, which is well-below the suggested maximum differences 

of 20% difference [30,38,39]. These findings suggest that this method is either minimally 

affected by interfering substances or that it is not at all affected. Interferences from 

components in serum separator tubes (SST) have been reported [46] but were not found with 

our method using BD Vacutainer® SST™ (Franklin Lakes, NJ) probably because of the use 

of different chromatographic conditions.

Some methods described in literature use derivatization procedures to enable analysis by 

GC-MS or to achieve higher sensitivity of LC-MS measurements [47–49]. Our method does 

not require derivatization, which minimizes complexity and facilitates automation. 

Furthermore, other methods employ ethers, such as methyl tertiary-butyl ether [24], diethyl 

ether [50], and diethyl ether/ethyl acetate mixtures [51] for the liquid–liquid extraction. 

However, these solvents are difficult to handle with automatic pipetting system and require 

special safety considerations. The solvents used in our method showed compatibility with 

automated liquid handlers and require fewer safety considerations than ethers [52–54].

The present method proofed a consistent result over a 2-year period at all concentration 

levels, as well as experimental variations with very minimal matrix effect and no or 

negligible difference for testosterone in neat and matrix. Measurement values obtained with 

this method are in high agreement with established reference methods [30] and meets 

performance criteria for accuracy used by the CDC Hormone Standardization Program [35]. 

This described method provides a consistently high accurate and sensitive LC-MS/MS assay 

for testosterone measurements in serum at all concentration levels typically observed in men 

as well as in women and children.
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Fig. 1. 
LC-MS/MS selected ion chromatograms of the quantification transitions for testosterone 

(top) and IS (bottom) in a female patient serum sample (1.00 nmol/L, 29 ng/dL).
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Fig. 2. 
Deming regression (a) and bias plot (b) between described method and an established 

reference method using 172 individual health patient serum sample.
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Fig. 3. 
Ruggedness testing (n = 7; error bar: standard deviation). *Five main method parameters — 

P1: equilibration time of serum and internal standard (20, 30, and 40 min); P2: pH of 

dissociation buffer (5.2, 5.5, 5.8); P3: dissociation time of testosterone from binding proteins 

(90,120, and 150 min), P4: concentration of dissociation buffer (0.3, 0.5 and 0.7 mol/L); and 

P5: pH of deprotonation buffer (9.4, 9.8 and 10.2).
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Table 1

Serum testosterone concentrations in individuals at difference age groups and sex.

Age group Gender Testosteronemedian (range)

6–11 years Female (n = 50) 0.18 (0.03–0.91) nmol/L5.20 (0.92–26.14) ng/dL

Male (n = 50) 0.17 (0.06–10.77) nmol/L4.94 (1.75–310.63) ng/dL

18 years and older Female (n = 75) 0.80 (0.08–3.33) nmol/L23.02 (2.36–95.91) ng/dL

Male (n = 75) 18.06 (1.10–35.49) nmol/L520.93 (31.66–1023.74) ng/dL
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Table 2

Accuracy traceability to JCTLM listed materials and NIST serum reference materials.

Samples Certified value Measured value (N = 3) %Bias

ERM DA345 19.7 nmol/L
570 ng/dL

19.4 nmol/L (95% CI: 18.4–20.5)
560 ng/dL (95% CI: 530–590)

−1.8

ERM DA346 0.890 nmol/L
25.5 ng/dL

0.881 nmol/L (95% CI: 0.849–0.912)
25.4 ng/dL (95% CI: 24.5–26.3)

−0.4

SRM 971 M 22.3 nmol/L
643 ng/dL

22.5 nmol/L (95% CI: 21.9–23.0)
649 ng/dL (95% CI: 633–664)

0.9

SRM 971 F 0.961 nmol/L
27.8 ng/dL

0.926 nmol/L (95% CI: 0.739–1.11)
26.7 ng/dL (95% CI: 21.3–32.1)

−4.0

Clin Chim Acta. Author manuscript; available in PMC 2016 February 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 16

Table 3

List of steroid hormones used in the interference analysis.

Steroids Formula Molecular weight Supplier

Estrone C18H22O2 270.4 Cerilliant

Estradiol C18H24O2 272.4 Cerilliant

5,16-Androstadien-3b-ol C19H28O 272.4 Steraloids

16, (5a)-Androsten-3-one C19H28O 272.4 Steraloids

4,16-Androstadien-3b-ol C19H28O 272.4 Steraloids

2,(5a)-Androsten-17-one C19H28O 272.4 Steraloids

Estriol C18H24O3 288.4 Cerilliant

Dehydroepiandrasterone C19H28O2 288.4 Cerilliant

Epitestosterone C19H28O2 288.4 Sigma-Aldrich

Trans-dehydroandrosterone C19H28O2 288.4 Sigma-Aldrich

Trans-androsterone C19H30O2 290.4 Sigma-Aldrich

5-Androstenediol C19H30O2 290.4 Steraloids

Androsterone C19H30O2 290.4 Cerilliant

Etiocholan-3a-ol-17-one C19H30O2 290.4 Sigma-Aldrich

Dihydrotesosterone C19H30O2 290.4 Cerilliant

17a-Ethinylestradiol C20H24O2 296.4 Sigma-Aldrich

19-Norethindrone C20H26O2 298.4 Sigma-Aldrich

D(−)-Norgestrel C21H28O2 312.4 Sigma-Aldrich

Progesterone C21H30O2 314.5 Cerilliant

5-Pregnen-3β-ol-20-one C21H32O2 316.5 Steraloids

Pregnenolone C21H32O2 316.5 Sigma-Aldrich

17α-Hydroxyprogesterone C21H30O3 330.5 Cerilliant

17α-Hydroxypregnenolone C21H32O3 332.5 Steraloids

Corticosterone C21H30O4 346.5 Cerilliant

11-Deoxycortisol C21H30O4 346.5 Cerilliant

Cortisone C21H28O5 360.4 Steraloids

Hydrocortisone C21H30O5 362.5 Steraloids

Dehydroepiandrosterone sulfate C19H28O5S 368.5 Steraloids
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